
Data Architecture For Location Aware Smarter Water
Sensor Visualization

Eli M. Dow
emdow@us.ibm.com

Thomas Fitzsimmons
tdfitzsi@us.ibm.com

Steven Schmidt
skschmid@us.ibm.com

Doug Milvaney
dlmilvan@us.ibm.com

ABSTRACT
The goal behind the Smarter Water Sensor Visualization project

is to design and build a common visualization portal for next

generation hydrological data. Smarter Water is designed to be

extensible and is configured to support meteorological data from

multiple sources as well as track any correlative events. The result

of the Smarter Water project is a generic foundation for location

based sensor data.

General Terms
Measurement, Design, Human Factors, Standardization

Keywords
Smarter Water, ODM, Sensors, Hydrological data, Visualization

1. INTRODUCTION AND

MOTIVATION
Building a smarter planet is a corporate initiative of IBM. There

are three big ideas driving the building of a smarter planet. The

first is to instrument the worlds systems, the second is to

interconnect them, and the third is to make them intelligent. Say

"water" and relatively few people automatically think about IBM,

but when you start talking about instrumentation and

interconnected systems, the connection makes sense. As it turns

out, IBM is undertaking a variety of water research projects

[SMARTER WATER], but the topic of this paper is a next-

generation data visualization portal developed by IBM for the

Beacon Institute for Rivers and Estuaries (BIRE) [2].

BIRE is headquartered along the Hudson River estuary

in the city of Beacon, New York, just a few miles away from

several IBM sites, including Poughkeepsie, NY which shares

Beacon's view of the Hudson. For quite some time, BIRE and

other agencies [7] on the Hudson River have been deploying

sensor instrumentation to record and collect data. The key to this

project is aggregating the recorded data and sharing it efficiently

and effectively so that researchers can retrieve and use the data as

easily as possible. This paper describes one effort to aggregate a

broad variety of water data, from the Hudson river and elsewhere,

into a single, cohesive system for analysis. The contribution of

this work is two-fold. The first major contribution is the

discussion of enhancements made to the Observations Data Model

[4], developed by the Consortium of Universities for the

Advancement of Hydrological Science, Inc (CUAHSI), that is

necessary for enterprise grade storage and analysis of data. The

second contribution of this paper is the discussion of the data

aggregation architecture developed by our team along with a

discussion of the technical hurdles preventing researchers from

easily analyzing existing hydrological data.

2. PROJECT ARCHITECTURE

The architecture of our software can be roughly divided into 3

constituent parts. The first part is the back-end database layer,

which is a SQL implementation hosting a schema which is a

modification of ODM. Adding support for a new database that

supports ANSI SQL syntax is relatively easy. We currently

support MySQL [14], Microsoft SQL server [13], and IBM DB2

[9]. We plan to support the open source Postgres database [16] in

the near future.

The second constituent part is the business logic which

contains the core algorithms for importing and analyzing the data.

This portion of the software is written entirely in the JAVA

programming language [15]. Java was chosen for its ease of

development and enterprise integration. Our implementation

consists of a set of libraries and servlets running on either Apache

Tomcat [1] or the IBM WebSphere Application Server [10]. The

application has not been ported to other containers at this time,

such as JBOSS [17], but it should be straightforward to do so

given that the application has already been designed to run on two

containers from entirely different vendors.

The last component of our software is the user visible

elements that make up the front end user interface. This portion of

the software was written using a combination of Java Server Pages

(JSPs), Javascript/AJAX with jQuery [12], HTML, and CSS.

All of our software was written with the Eclipse

Integrated development environment [6] with a version control

plug-in to make rapid development effective on a short

development time frame [18].

3. OBSERVATIONS DATA MODEL

A key component of the infrastructure used in this implementation

is the Observations Data Model. This section of the paper will

explain what ODM is, why it was selected, and identify some of

the shortcomings that needed to be addressed in order to use

ODM in a larger context.

3.1 What is ODM

Observations Data Model (ODM) is a database schema that we

have chosen to conform our data to. ODM is designed specifically

to hold data about hydrological values as well as where the values

have originated from. It was developed by the Consortium of

Universities for the Advancement of Hydrological Science, Inc

(CUAHSI) with the goal of allowing faster data queries.

mailto:emdow@us.ibm.com
mailto:dlmilvan@us.ibm.com
mailto:skschmid@us.ibm.com
mailto:tdfitzsi@us.ibm.com

3.2 Why We Chose ODM and What Other

Choices We Considered

We chose the ODM schema because it allows us to set a standard

for hydrological data collection. This means that all data we

collect will be manipulated from its original instantiation to

conform to this data model. We considered several other choices

before deciding such as:

3.2.1 Creating our own Database Schema

The main problem with creating our own database schema is that

it would create another standard and that is not what we wanted.

We wanted a universal standard that was well established and that

others had access to. Another reason we opted not to design our

own data model is that ODM has most of the tables required for

us and is already well documented.

3.2.2 Net Common Data Form

NetCDF [19] is a set of libraries and self-describing, machine

independent formats that support creation, access, and sharing of

scientific data. The problem we encountered with NetCDF is that

it proved to be too complicated for our needs.

3.3 Problems with ODM

Although ODM has proven useful and has many features we

sought in a data model, it was not without its faults. One of the

more immediate problem was that ODM was designed for use

solely on Microsoft Windows platforms. This meant that there

were no creation scripts for other databases such as MySQL and

DB2. Also, any tools designed around ODM are Windows only

programs which denies use to researchers who wish to use their

products on different operating systems.

One of the biggest hurdles to overcome when using

ODM is the fact that it is US-centric. This means that the columns

in the tables are designed for use specifically with data from US

sources such as having columns to hold data for “state” and

“county” while there are no columns for country or province. To

remedy this, we now use the ISO 3166-1 alpha-2 country codes

along with a state or province's two-letter code combined in the

state column. This allows ODM to be used globally. For example,

New York in the United States would be “US-NY” while British

Columbia in Canada would be “CA-BC”. One problem this

causes is the extra parsing that must be done when retrieving the

data. Another problem that we encountered was the provider

USGS stored data for Iraq as Idaho. We solved this by now

checking if the site name contains Iraq before inserting into the

database.

We have since resolved these shortcomings by

implementing schema creation scripts for both MySQL and DB2

database implementations. This allows ODM to be instantiated on

low cost open platforms such as Ubuntu Linux with MySQL on

Intel class hardware, or on Enterprise grade compute platforms

like DB2 version 9 running on AIX 6.1 on IBM System p servers.

We feel the enhancements made to ODM to support

other database back-ends are the right approach for the long term.

Though we have made no effort to port the various userspace

applications which are commonly associated with ODM to the

new database platforms, we feel that in the long run, those efforts

should be undertaken to support open low cost research platforms

as well as those platforms which are used for serious computation

and data analysis for hydrological research.

3.4 Extensions to ODM

We have since made several changes to ODM to better suit our

own needs. This includes the creation of several tables including:

SiteHasData, SiteProvidesVariable, Stats, and a set of tables that

keep track of whether or not a site has data for a given week,

month, or year. SiteHasData currently stores a list of site's Ids that

have at least one entry in the data values table.

SiteProvidesVariable stores each variable Id and what site it

belongs to. The stats table currently holds two values:

sites_with_data which is the count of the total number of distinct

sites in SiteHasData, and data_points which is a count of the

number of entries in the data values table. We feel these

extensions are are necessary for any kind of serious data analysis

on data stored in an ODM instance.

Another extension to the original schema was the

inclusion of foreign keys to enforce referential integrity. This

helps greatly when retrieving data, as we know that if a table

references another column, that column value will be present in

the database and will not be deleted or missing. We feel that the

lack of foreign keys was likely an oversight by the original

designers of the schema, and seems to be a non-controversial

change which should be adopted upstream.

As well as adding tables, we have created creation

scripts for two large, well known databases, MySQL and DB2.

This helps people who are not running Windows to set up their

own ODM schema.

With our discussion of the data storage format

concluded, let us turn our attention to the mechanism by which we

populate the database.

4. DATA IMPORTERS

A data importer is a program that retrieves data from a given

source, which is to say some entity which provides data values

with time stamp information and geolocation data, in the source's

own data format. The data is retrieved and then parsed on the fly

as it is normalized into the ODM format.

These data importers are each unique in the way they

retrieve the data as each source stores their data differently. We

will go more in depth about this later. Data importers have been

written for individual next generation hydrological sensors and

government agencies with copious volumes of data, as well as

commercial and non-profit agencies. A data importer can be

written, from scratch, in about a single week's time.

4.1 Collecting the Data
In order to populate our own databases, each data importer must

establish a connection to the source it wishes to get data from. The

data provided is entirely up to the provider of the information.

The retrieval methods used range from HTML scraping to

downloading CSV files to establishing direct database

connections to remote hosts.

Once connected, the importer must get the meta-data

information for each site (physical location) the source has data

for. This includes the geographic location of the sensor (usually

provided in latitude and longitude) as well as a full list of the

variables are measured at the site.

With the list of geographic locations and the variables

stored at those locations, the next step is to actually parse or

acquire the data values corresponding to those variables. As

mentioned earlier, each data importer does this step differently as

some handle CSV files while others must scour through HTML.

Data importers will usually wait until they have a chunk of data

before inserting as to not consistently pressure the database.

A data importer is designed to never stop trying to get

data and will soon be configured to acquire the current week's

data and then once that task is complete, to start backtracking and

reading in historical data. This means data will always be current

and eventually all historical data will be present.

4.2 Data Sources

4.2.1 Acoustic Doppler Current Profiler

Our ADCP [8] source provider is responsible for getting data

values pertaining to the Hudson river. We retrieve this data by

scraping comma separated values from an HTML web page. The

unique facet of the ADCP source provider is that it does not

present historical data usually over a day or two old. This

requires our Data Importer to be continuously running in order to

ensure that data is not missed because the data is not archived

externally. Our Data Importer is responsible for maintaining a

constant connection to the ADCP web page so that we can serve

as the database archive of the hydrological data. About 500 lines

of provider specific code were written to achieve the data

importing of the ADCP source provider.

4.2.2 Beacon Institutes for Rivers and Estuaries

Beacon [2] is a local water research company located in Beacon,

NY. We currently only have a small snapshot of data from their

database but we are working on establishing credentials to allow a

persistent database connection to allow us to pull data directly.

Once we are able to get a direct connection to the Beacon

database, we will be able to provide a more accurate and complete

analysis of the hydrological data for the Hudson River. It will

allow us to correlate the recorded information with the ADCP

source provider enabling better quality assurance.

4.2.3 Canadian Water Office

The Canadian Water Office [3] is a superb source of hydrological

data from across Canada. We acquire our data from the Canadian

Water Office by HTML scraping. However, we must first bypass

their disclaimer and obtain a cookie saying that we have access to

the web page as well as establishing a SOAP connection. Due to

these hurdles, the Canadian Water Office Data Importer takes

around 1000 lines of provider specific code to access, parse, and

record their data.

4.2.4 Husdon River Environmental Conditions

Observation System

HRECOS [7] is another Hudson river environmental agency. To

retrieve historical data for HRECOS, CSV files are downloaded to

a local directory and are manipulated from there. Since HRECOS

provides their data in CSV files, we were able to adapt the parsing

logic from the ADCP Data Importer to work with these

downloaded files. Data from the current year, however, is not

available in CSV file format, and must be retrieved from the web

service provided by HRECOS. This requires the data importer to

dynamically shift between retrieving current data and retrieving

historical data using two unique methods of data acquisition.

Having more sensors in the Hudson River area enables us to

correlate our data with ADCP and Beacon so as to achieve better

analysis of the current conditions and to formulate predictions for

future hydrological values. The HRECOS Data Importer required

approximately 650 lines of provider specific code.

4.2.5 National Oceanic and Atmospheric Agency

NOAA [20] is another large data provider that we pull data from.

For NOAA we first must establish a connection to their website

which has proven to be fickle and can take several minutes to

establish a connection depending on their site's ability to accept

SOAP Requests. Once a connection is established, our SOAP

Request is processed asking for the available information

variables for a specific sensor. We retrieve all of the information

for a site through SOAP Requests and SOAP Responses. Due to

the nature of SOAP Requests and the various types of available

hydrological and meteorological information from NOAA, there

are numerous different types of requests that must be sent and

received from their site. As a result, the NOAA Data Importer is

about 1100 lines of provider specific code.

4.2.6 National Weather Service

NWS [21] is our second largest provider with over 4,000 sites.

The data is brought in through HTML scraping as well. This Data

Importer was more tedious to write than most of the other

providers because of the lack of true site information provided by

NWS. We had to write our own API to figure out site information

such as the city and state that the site was located in because NWS

only displays the latitude and longitude for a site. Other than the

location issues, NWS was mainly another application of the

HTML scraping we used from the ADCP and Canadian Water

Office Data Importers. The NWS Data Importer is comprised of

about 600 lines of provider specific code.

4.2.7 United States Geological Survey

USGS [22] is our largest data provider with over 12,200 sites. We

currently have a data importer thread responsible for each state

and province we are receiving data for to improve our data range

over every state. Each individual thread finds all of the available

sites in its designated state and proceeds to access the available

data for only those sites. This enables parallel importing of

hydrological data so that we can see information across the

country rather than having to wait as it proceeded one at a time,

state by state. USGS is another Data Importer that retrieves data

through HTML scraping. This Data Importer is written with

about 650 lines of provider specific code.

4.3 Normalizing the Data

All data brought in, whether it be source information, site

information, variables or data values, is all broken down and

reformatted to be inserted into our ODM database. We have

implemented filters which catch a variety of errors in the source

data. Though we cannot aim to completely validate and scrub all

incoming data, we can check for obvious errors such as

temperatures, velocities, or chemical concentrations which fall

outside of the realm of values expected in earths hydrological

systems.

Once the data is stored in our ODM database,

manipulation and observation of the data becomes trivial. The

normalization allows comparison between the data of multiple

sources, even if the sources themselves store data radically

differently from each other. Having the data in one standardized

form also allows us to easily visualize the data, as well as release

the data online for researchers to download for their own use.

4.4 Gaps In Data

Gaps exist in data for various reasons: a sensor went down for a

period of time, data was corrupted, there was no data to collect for

that variable, etc. To solve this, we limit our user interface to only

show times where data is present and only show variables that

have data for the given time period. This ensures that the user will

never be able to generate visual data when no data is present and

thus prevent the user from becoming frustrated trying to find time

periods with data.

5. VISUALIZATION OF THE DATA

The aggregation of vast sums of data is not, by itself a useful

endeavor. It is the act of making sense of that data which is the

useful activity.

5.1 Standard Time Series

To further that goal, we have opted to implement automatic time

series graphs for all data values recorded. Graphs may be drawn

as line graphs or scatter-plots and saved directly as PNG or JPEG

graphical formats. Users may select the data range (which defaults

to a one week interval ending at the current date) by clicking easy

to use calendar buttons or by typing the date in textual format.

In addition to allowing users to alter the time range,

graph type, and file format, we have opted to provide direct access

to the core graphing services as a web-service which is completely

documented on the web site. This allows sophisticated users, such

as hydrological researchers, to generate graphs of the data pro

grammatically for use in their own publications.

Having implemented that service, it quickly became

obvious that single value automated time series were insufficient

to answer anything but the most basic questions about the data.

We therefore implemented arbitrary combinations of data

automatically accessible through an easy to use web site, and

through the same web service described for single variable time

series data graphing.

5.2 Arbitrary Combinations of Data

One key aspect of our data visualization system, is that it is to the

best of our knowledge the first such system that allows user

defined, arbitrary combinations of data to be graphed concurrently

from disparate data sources.

Users are presented with an easy to use web page that

lists the agencies providing data and the names of all the

geographic site locations with measured data. Once a geographic

location is specified, a list of all the measured variables is

presented as easy to chose check-boxes. Clicking any combination

of check-boxes updates the data visualization graphs in real time.

This activity allows users to look into the data and correlate

values. One example of such a correlation is comparing the data

measurements at the IBM Poughkeepsie ADCP location to the

NWS location across the river. There should, generally speaking

be a high degree of correlation due to the geographic proximity.

Other examples of the usefulness of this design, include

being able to record a value such as salinity at multiple locations

throughout the Hudson river. Since the Hudson river is tidal in

nature, one can track the salinity over great distances at various

times to look for the influence of the tidal rhythms of this data.

Additional combinations which have proven insightful

are the combination of meteorological data in conjunction with

hydrological data such as air temperature and rain fall to measured

hydrological values in bodies of water to look for correlation

trends.

6. WEB SERVICES TO OBTAIN DATA

In addition to allowing visual manipulation of our data, we offer

our data freely to be downloaded in three different formats in

order to spread the ideas of smarter water. Our formats have been

selected due to their commonality and how easy the data could be

parsed from these formats.

6.1 Why Web Services?

Web services were the obvious choice to display the data as the

web is cross platform, no special hardware is required beyond a

connection to the Internet, and it does not require top of the line

computers to run. Web services also allow easy access to our data

by being only a mouse click away with no special downloads.

6.2 NetCDF

NetCDF, also known as Net Common Data Format, is a set of

libraries and self-describing, machine independent formats that

support creation, access, and sharing of scientific data. We have

the ability to export our data as NetCDF. We do this because it is

a widely used format and has ties to IBM.

6.3 Water Markup Language

Water Markup Language, better known as WaterML, is a branch

of traditional XML developed by CUAHSI. WaterML was created

in conjunction with ODM to display. Since we use ODM as our

database schema, it made sense to export a format designed to

display the contents of ODM. More informtion about WaterML

can be found at the CUAHSI web site [5].

6.4 Compact XML Representation

For internal usage between front end AJAX and Java servlets, we

use our own version of XML with compacted identifier tags. This

is done to speed up transfer of XML across the system because

now that the files are significantly shorter, they are smaller and

thus easier to transfer. This is done at the expense of readability.

The readability however is not an issue as an end-user will never

be exposed to the XML generated by these servlets.

In addition to our own compact version, we do offer a

full, non-compacted XML version of data values that can be

accessed and downloaded by end-users.

6.5 Concluding Thoughts on Data

Representation

We can say unequivocally that if each agency we communicated

with provided some form of self describing data, ideally a

standard such as WaterML, the process of aggregating and

comparing data would be much simpler. There is obviously work

to be done in order to persuade the agencies involved to ratify and

adopt common standards. Finally, it should be noted that

providing additional data output formats as a web service is a

relatively trivial endeavor and can generally be accomplished

within a week if the output file format is well specified.

7. ANALYTICS

We currently perform basic analysis on our data. This includes

processing the mean, median, mode, and standard deviation for a

given date range in order to identify outliers.

We hope to later include such analysis as being able to

detect outliers as they are added as well as being able to notice

invalid data by comparing data values from sites that are relatively

near one another. These would greatly help our data sets by

removing incorrect values which could skew analysis and cause

invalid graphs to be drawn.

In addition, we hope to implement a notification scheme

for identifying situations where recorded values seem invalid or

trending towards extremes. The applications of such a system

include identifying potentially hazardous chemical concentrations

on extremely short time scales.

8. FUTURE WORK

The system has been implemented in a robust, easily expandable

manner in order to adjust and adapt to future developments in the

field of hydrological research. Optimally, this system will see

additions over time to adjust for future desired data or new sensor

technology. There is also room to expand the options for

acquiring and examining the data stored in our databases, such as

new graphing formats or more advanced analytics for stored data.

As mentioned above, the system is designed such that

new data importers can easily be written for other sources or

organizations. This means that as new organizations come to light

in this area, we can retrieve their data and store it for observation

and analysis along with the organizations that came before them.

As a data importer takes about a week to develop to completion,

the system can be up to date with new organizations very quickly.

The methods for visualization and analysis can also be

expanded and improved. Currently we implement the viewing of

data in line graphs or scatter-plots [26, 27], in either JPG or PNG

image formats. Due to the use of the standard time series, new

graph types can be easily implemented over the existing engine.

Future possibilities include the implementation of heat maps, bar

graphs, and Box-and-Whisker plots [25, 23, 24]. New image

format implementation is trivial, and could be enacted quickly if a

request for a new format was made.

As discussed previously, we also wish to implement

more advanced analytics into the system and web service. The

inclusion of data sanitization will improve the overall quality of

data, and also allow us to inform organizations in charge of sensor

maintenance when their sensor is malfunctioning.

A loftier, ideological goal of the Smarter Water project

is the promotion of a single standard in the hydrological data

field. Ideally, Smarter Water will work with government agencies

and private institutions to adopt WaterML and ODM as the

standards for hydrological data. This would allow the exchange of

data between agencies to be much more efficient.

Standardization would also encourage the building of a

community around the acquisition and study of hydrological data,

where those in charge of sensor maintenance and data

visualization will be able to freely and easily communicate with

researchers, students, and other parties with interest in studying

the data acquired.

9. ACKNOWLEDGMENTS
We would like to thank Dr. Harry Kolar and Dr. Anton Riabov

from IBM Research, Dr. Michael Passow from IBM Systems and

Technology Group in Fishkill NY, development manager Gary

Anderson from IBM Poughkeepsie, and the IBM Poughkeepsie

Site Location Executive Michael Desens for their tireless support

in these efforts.

10. REFERENCES (TODO)

[1] APACHE SOFTWARE FOUNDATION, 2011. Apache

Tomcat. http://tomcat.apache.org/

[2] BIRE, 2011. Beacon Institute of Rivers and Estuaries.

http://www.bire.org/home/

[3] CANADIAN WATER OFFICE, 2011. Canadian Weather

Office. http://www.wateroffice.ec.gc.ca/

[4] CUAHSI, 2010. Observational Data Model.

http://his.cuahsi.org/odmdatabases.html

[5] CUAHSI, 2011. WaterML. http://his.cuahsi.org/wofws.html

[6] ECLIPSE, 2011. Eclipse Interactive Development

Environment. http://www.eclipse.org/

[7] HRECOS, 2011. Hudson River Environmental Conditions

Observing Systems. http://www.hrecos.org/joomla/

[8] IBM, 2011. Acoustic Doppler Current Profiler.

http://spirit109.watson.ibm.com:9020

[9] IBM, 2011. DB2 Database Software. http://www-

01.ibm.com/software/data/db2/

[10] IBM, 2011. IBM WebSphere Software. http://www-

01.ibm.com/software/websphere/

[11] IBM, 2011. Smarter Water Management.

http://www.ibm.com/smarterplanet/us/en/water_management

/ideas/index.html?ca=v_water

[12] JQUERY, 2010. jQuery. http://jquery.com/

[13] MICROSOFT, 2011. Microsoft SQL.

http://www.microsoft.com/sqlserver/en/us/default.aspx

[14] MYSQL, 2011. MySQL. http://www.mysql.com/

[15] ORACLE 2011. Java. http://www.java.com/

[16] POSTGRESQL, 2011. PostgreSQL

http://www.postgresql.org/

[17] REDHAT, 2011. jBoss. http://www.jboss.org/

[18] TIGRIS, 2009. Subclipse. http://subclipse.tigris.org/

[19] UNIDATA, 2011. Network Common Data Form.

http://www.unidata.ucar.edu/software/netcdf/

[20] US DEPT OF COMMERCE, 2011. National Oceanic and

Atmospheric Administration. http://noaa.gov/

http://noaa.gov/
http://www.unidata.ucar.edu/software/netcdf/
http://subclipse.tigris.org/
http://www.jboss.org/
http://www.postgresql.org/
http://www.java.com/
http://www.mysql.com/
http://www.microsoft.com/sqlserver/en/us/default.aspx
http://jquery.com/
http://www.ibm.com/smarterplanet/us/en/water_management/ideas/index.html?ca=v_water
http://www.ibm.com/smarterplanet/us/en/water_management/ideas/index.html?ca=v_water
http://www-01.ibm.com/software/websphere/
http://www-01.ibm.com/software/websphere/
http://www-01.ibm.com/software/data/db2/
http://www-01.ibm.com/software/data/db2/
http://spirit109.watson.ibm.com:9020/
http://www.hrecos.org/joomla/
http://www.eclipse.org/
http://his.cuahsi.org/wofws.html
http://his.cuahsi.org/odmdatabases.html
http://www.wateroffice.ec.gc.ca/
http://www.bire.org/home/
http://tomcat.apache.org/

[21] US DEPT OF COMMERCE, 2011. National Weather

Service. http://weather.gov/

[22] US DEPT OF INTERIOR, 2011. United States Geological

Service. http://usgs.gov/

[23] WIKIPEDIA, 2011. Bar Graph.

http://en.wikipedia.org/wiki/Bar_graph

[24] WIKIPEDIA, 2011. Box and Whisker Plot.

http://en.wikipedia.org/wiki/Box_and_whisker_plot

[25] WIKIPEDIA, 2011. Heat Map.

http://en.wikipedia.org/wiki/Heat_map

[26] WIKIPEDIA, 2011. Line Graph.

http://en.wikipedia.org/wiki/Line_graph

[27] WIKIPEDIA, 2011. Scatter Plot.

http://en.wikipedia.org/wiki/Scatter_plot

http://en.wikipedia.org/wiki/Scatter_plot
http://en.wikipedia.org/wiki/Line_graph
http://en.wikipedia.org/wiki/Heat_map
http://en.wikipedia.org/wiki/Box_and_whisker_plot
http://en.wikipedia.org/wiki/Bar_graph
http://usgs.gov/
http://weather.gov/

	1. INTRODUCTION AND MOTIVATION
	2. PROJECT ARCHITECTURE
	3. OBSERVATIONS DATA MODEL
	3.1 What is ODM
	3.2 Why We Chose ODM and What Other Choices We Considered
	3.2.1 Creating our own Database Schema
	3.2.2 Net Common Data Form

	3.3 Problems with ODM
	3.4 Extensions to ODM

	4. DATA IMPORTERS
	4.1 Collecting the Data
	4.2 Data Sources
	4.2.1 Acoustic Doppler Current Profiler
	4.2.2 Beacon Institutes for Rivers and Estuaries
	4.2.3 Canadian Water Office
	4.2.4 Husdon River Environmental Conditions Observation System
	4.2.5 National Oceanic and Atmospheric Agency
	4.2.6 National Weather Service
	4.2.7 United States Geological Survey

	4.3 Normalizing the Data
	4.4 Gaps In Data

	5. VISUALIZATION OF THE DATA
	5.1 Standard Time Series
	5.2 Arbitrary Combinations of Data

	6. WEB SERVICES TO OBTAIN DATA
	6.1 Why Web Services?
	6.2 NetCDF
	6.3 Water Markup Language
	6.4 Compact XML Representation
	6.5 Concluding Thoughts on Data Representation

	7. ANALYTICS
	8. FUTURE WORK
	9. ACKNOWLEDGMENTS
	10. REFERENCES (TODO)

